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Abstract—Inter-datacenter transfers of non-interactive but
timely large flows over a private (managed) network is an
important problem faced by many cloud service providers.
The considered flows are non-interactive because they do not
explicitly target the end users. However, most of them must be
performed on a timely basis and are associated with a deadline.
We propose to schedule these flows by a centralized controller,
which determines when to transmit each flow and which path to
use. Two scheduling models are presented in this paper. In the
first, the controller also determines the rate of each flow, while
in the second bandwidth is assigned by the network according
to the TCP rules. We develop scheduling algorithms for both
models and compare their complexity and performance.

I. I NTRODUCTION

Cloud services continue to grow rapidly, and major cloud
service providers connect many geographically dispersed data-
centers to form geo-distributed cloud networks [1], [13], [16].
Astronomical amounts of data are transferred over this network
of datacenters for a myriad of reasons, including:

• Data replication to ensure disaster recovery.
• Data relocation in order to shut off some sites during

off-peak hours to save resources or for maintenance.
• Replication and/or relocation of data in order to bring it

closer to customers in different geographic locations.

Such inter-datacenter transfers are non-interactive, because
they do not explicitly target the end users. Nevertheless, they
are performed on a timely basis and each is associated with
a rough target deadline. We address the problem of timely
transfer of these large non-interactive data flows between
datacenters, not over the public Internet but over a well-
managed private network.

The flows that are handled by the considered scheduler
fulfill the following requirements: (a) their starting timecan
be controlled; (b) their bandwidth demand is very large and
known (i.e., we schedule elephants, not mice); (c) each of
them has a target deadline. Other flows are not handled by
our scheduling algorithms.

We assume that the control logic has the following infor-
mation for each to-be-scheduled data flow: its size, its source-
destination pair, its time of release and required deliverytime,
and a utility function that indicates the “profit to the system”
for delivering the flow on time. In addition, the control logic
knows the set of paths over which each flow can be routed. The
controller needs to schedule the transmission of each flow such
that the total utility is maximized and the network bandwidth
resources are not exceeded.

Our network model is similar in many aspects to the
one considered in [12]. The bandwidth of the considered
private network is divided into two classes: best-efforts and
guaranteed services. The first class is for spontaneous best-
effort connections that are not targeted by the controller.The
other class is for the considered scheduled flows. Thus, the
scheduled flows do not encounter congestion due to the non-
scheduled flows.

We believe that the main application of the considered
model is in the offline context, when all the flows are given
to the controller before the scheduling algorithm is invoked.
However, we will also present online algorithms, which can be
used if the controller receives the flows one by one when they
are first ready for scheduling. In both cases, the decision when
to admit each flow, which path to use (when multiple paths
are given for each flow), and how much bandwidth to allocate
to each flow, if bandwidth is not assigned by the network, is
made solely by the controller.

As an application example, consider the Globally-Deployed
Software Defined WAN of Google, called B4. The char-
acteristics of this network, as described by [13], make it
perfectly suited to the model and problem considered in this
paper: a private WAN is used for synchronizing large data
sets across sites; the network operator can enforce relative
application priorities and control bursts at the network edge,
rather than through overprovisioning or complex function-
ality in the WAN; capacity targets and growth rate led to
unsustainable cost projections, which render traditionalWAN
overprovisioning approaches impractical.

When addressing the problem of inter-datacenter flow
scheduling, it is crucial to determine how congestion control
will be performed. We believe there are two possible answers:

• Network Assigned Bandwidth (NAB). In this model,
all the scheduled flows are transmitted using TCP. The
bandwidth assigned to every flow is allocated by the
network according to the TCP rules. The controller needs
to determine the starting time and the routing path (if
flows are not limited to using their shortest paths) for
each flow, and to estimate when the transmission of every
flow will finish.

• Controller Assigned Bandwidth (CAB). In this model,
the bandwidth assigned to every flow is allocated by
the controller whose role is to prevent congestion in
the network and to ensure that flows are delivered on
time. Thus, the controller determines the starting time,
the allocated rate, and the routing path (if flows are not
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routed only over their shortest paths) for each scheduled
flow. In this model, end-to-end reliability is decoupled
from congestion control. The protocol used for end-to-
end transmission is referred to asTCP

−. This proto-
col is similar to TCP, but it does not implement TCP
congestion control, because the transmission rates of the
senders are determined in advance by the controller. The
TCP

− protocol is not addressed in this paper, but its
implementation is relatively simple.

Scheduling-based congestion control is not a new idea. For
example, see [2], [10] and references therein.TCP

− can be
viewed as the opposite of the Datagram Congestion Control
Protocol (DCCP) [15], becauseTCP

− provides reliability
without congestion control whereas DCCP provides conges-
tion control without reliability. There were some efforts in the
past to defineTCP

− under the name “reliable UDP1.”
As already indicated, in our problem definition, the sched-

uler chooses a routing path for each flow, but it does not
compute these paths. In a network that supports only shortest
path routing, this set will contain only shortest paths, while
in a network that supports traffic engineering, this set may
contain other paths as well. The problem of determining the
set of routing paths to be given to the scheduler as an input
is orthogonal to the scheduling algorithms proposed in this
paper.

NAB-scheduling is usually impractical, because every new
flow changes the termination time of existing flows, and
because it is very difficult for the controller to estimate the
bandwidth to be acquired by each flow even if the algorithms
proposed in [11], [20] are used. However, studying the NAB
model allows us to better understand the potential trade-off
between NAB’s performance and CAB’s practicality.

Our goal in this paper is three-fold. First, we want to develop
efficient algorithms for solving the scheduling problem for
both NAB and CAB. Our second goal is to compare the
complexity and performance of CAB-scheduling to that of
NAB-scheduling. The purpose of this comparison is to see
if the added complexity of NAB-scheduling is translated into
significant performance gain. Finally, it is intuitive thatflow
elasticity allows the scheduler to perform better. However, the
strength of the correlation between elasticity and performance
is not clear. Our third goal is thus to study this correlation
both for CAB- and NAB-scheduling.

The rest of the paper is organized as follows. In Section II
we present related work. In Section III we define the CAB-
scheduling problem, prove that it is NP-hard, and present
an approximation algorithm for solving it. In Section IV
we define the NAB-scheduling problem, which is also NP-
hard, and present two classes of algorithms for solving it.
In Section V we compare CAB and NAB from a theoretical
perspective, and in Section VI we compare their practical
performance. Finally, we conclude in Section VII.

1While there is no document that can be cited, there was an IETF draft
that expired in 2000.

II. RELATED WORK

Inter-datacenter networking has been attracting a lot of at-
tention lately. The need for a scheduling logic that determines
when to transmit each data flow is implicitly or explicitly
indicated in [3], [7], [9], [12], [13], [16], [19].

The two most relevant papers are probably [3] and [12].
In [12], the authors study a model similar to ours in that it
uses (1) global coordination of the sending rates of services
and (2) central allocation of data paths. The goal of their
proposed system is high efficiency while meeting certain
policy goals. They consider three priority classes: active,
elastic, and background. The transmission of the active and
elastic flows is scheduled by the controller. The focus of [12]
is on computing bandwidth allocations, updating forwarding
state, handling failures and prototype implementation.

In [3], the authors propose a scheduling model for dat-
acenter routing. Their paper focuses on finding an efficient
path inside the datacenter for each flow in order to maximize
the throughput. The controller collects flow information from
constituent switches, computes non-conflicting paths for flows,
and instructs switches to re-route traffic accordingly. Thegoal
is to maximize aggregate network utilization with minimal
scheduler overhead or impact on active flows.

In [16], the authors show how to rescue unutilized band-
width across multiple datacenters and backbone networks
and use it for non-real-time applications, such as backups,
propagation of bulky updates, and migration of data. While
the problem solved in [16] is different from the problem we
consider, in both cases the scheduler takes advantage of the
fact that the transmission of a data flow can often be postponed
to non-peak hours.

In [7], the authors study and analyze inter-datacenter traffic
characteristics using the anonymized NetFlow datasets col-
lected at the border routers of five major Yahoo! datacenters.
Their study reveals that Yahoo! uses a hierarchical deployment
of datacenters, with US backbone datacenters and several
satellite datacenters distributed in other countries. In [13], the
authors present the design, implementation, and evaluation of
a private WAN connecting Google’s datacenters across the
planet. This network is shown to have a number of unique
characteristics, such as massive bandwidth requirements de-
ployed to a modest number of sites, elastic traffic demand
that seeks to maximize average bandwidth, and full control
over the edge servers and network. These characteristics led to
a Software Defined Networking architecture using OpenFlow
to control relatively simple switches built from merchant
silicon. B4 phase 3 employs centralized traffic engineering,
and optimized routing based on 7 application-level priorities.
In addition, an external copy scheduler interacts with the
OpenFlow controller to implement deadline scheduling for
large data copies2.

In [9], the authors seek to minimize operational costs on
inter-datacenter traffic with store-and-forward at intermediate

2In http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf,
these properties are mentioned with no further details.
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nodes, by choosing routing paths, flow assignments, and
scheduling strategies for each source-destination trafficpair. In
[19], the authors propose a globally reconfigurable intelligent
photonic network that offers bandwidth-on-demand servicein
the core network for efficient inter-datacenter communication.
The proposed solution is motivated by the variability in
traffic demands for communication across datacenters: non-
interactive bulk data transfers between datacenters have dif-
ferent patterns than interactive end-user driven traffic.

In [17], the authors propose and evaluate a framework
for optimization-based request distribution, which enables ser-
vices to manage their energy consumption and costs. In [18],
the authors indicate the importance of cross-datacenter macro-
resource management, and propose a management layer to
make coordination decisions across applications and across
physical facilities.

III. T HE CONTROLLER ASSIGNEDBANDWIDTH (CAB)
SCHEDULING PROBLEM

A. Problem Formulation and Hardness

We start by defining the CAB-scheduling problem, where
bandwidth is allocated to flows by the scheduler. Each flow
is served by aTCP

− connection, which uses TCP-like rules
for guaranteeing end-to-end reliability, but does not perform
congestion control.

Problem 1 (CAB)

Input: A communication network, represented by a di-
rected graph. Each directed edgee has a transmission
capacityc(e) > 0. There is a set of data flows waiting to
be transmitted, each attributed with:

1) A pair of source/destination nodes and a positive
size (number of bytes).

2) A finite set of possible transmission windows. Each
window is associated with: (a) a description of a
routing path from the source to the destination; this
can be the default (sometimes known as “shortest”)
path, or any other path; (b) a release time, which
indicates when the flow is ready for transmission;
(c) a deadline, which indicates the time when the
flow must be completely delivered in order to be
useful; (d) a profit/utility, which is explained below.

3) A set of possible bandwidth rates that can be al-
located to this flow (e.g.,1 Mbps, 10 Mbps, 100
Mbps).

Objective: Find a maximum profit, feasible schedule with
at most onescheduling instancefor every flow. Each
scheduling instance of a flow is characterized by: (a) a
routing path and a starting time from one of the possible
transmission windows of this flow, sayw; (b) a fixed rate
from the set of possible rates. The rate is allocated to the
flow along the routing path associated withw until the
flow finishes. The time it takes for an instance to finish
is equal to the flow size divided by allocated bandwidth.
A schedule is said to be feasible if the total bandwidth

allocated to all instances at every timet on every linke
is ≤ c(e). If a flow starts after the release time of a
window w and finishes before the deadline of the same
window w, it acquires the profit/utility corresponding to
that window.

By using a generic utility/profit function, we allow the con-
troller to decide which parameter has to be optimized. For
example, by assigning the same profit to each flow, our
optimization function would maximize the number of flows
delivered on time. If the assigned profit is proportional to the
size of each flow, the optimization function would maximize
the amount of data delivered on time. It is also possible to
assign to each flow the priority of the originating user or
application; for example, a flow whose aim is to back up a
database will be assigned a lower profit than one whose aim
is to migrate a virtual machine. Moreover, since the profit is
associated with a transmission window, and not with a flow, the
same flow may have different priorities for different possible
transmission windows. As an example, one can assign to a flow
that is routed over one of its shortest paths a bigger profit than
the profit assigned to the same flow when it is routed over a
longer path.

CAB is related to the Throughput Maximization Problem
(TMP) [4], defined as follows. Let{Ai : i = 1, . . . , n} be a set
of activities, where each activity consists of a set of instances
I. Every instance has a profitp(I), a widthw(I), a start time
b(I), and a finish timef(I). For everyI ∈ Ai, there exists
a BooleanxI . The problem is

max
∑

All I

p(I)xI ,

subject to:
∑

I:b(I)≤t<f(I)

w(I)xI ≤ 1 for every timet

and
∑

I∈Ai

xI ≤ 1 for each activityAi.

CAB generalizes TMP in two important ways:
1) While in TMP the bandwidth allocated to each flow is

determined in advance and is given as a part of the input,
in CAB it is determined by the controller.

2) While in TMP all the flows run on one common link,
in CAB they run on an arbitrary network, and for each
flow a routing path is chosen.

CAB is not only NP-hard, but it also does not admit a PTAS
(polynomial-time approximation scheme). Namely, there exists
an ǫ > 0 such that there is no polynomial time approximation
algorithm whose approximation ratio isǫ to this problem. We
prove this by showing that CAB is MAX SNP-hard, which
implies that it does not admit a PTAS if P6= NP.

Theorem 1. CAB is MAX SNP-hard even in the special case
where the network has a single edge of unit capacity, all the
flows have the same size, there are 2 windows per flow that
do not intersect (in time), and the profit of each window is 1.
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Proof: The unweighted job interval scheduling problem
with k intervals per job is defined as follows. Its input is a
finite set of jobs, each of which is ak-tuple of real intervals.
Its objective is to select a non-intersecting subset of intervals,
such that at most one interval is selected for each job and the
total number of selected intervals is maximized. This problem
is MAX SNP-hard even if each job has only2 intervals, the
intervals of the same job are non-intersecting, and all the
intervals are of the same lengthL [21]. This problem is a
special case of CAB, in that it maps each job to a flow of size
L, converts each interval to a transmission window from the
beginning of the interval to its end, and assigns a profit1 to
each window.

B. An Approximation Algorithm for CAB

Although there is no PTAS for CAB, we are still able to
develop a polynomial time approximation algorithm with a
guaranteed approximation ratio. To this end, consider a flowto
which we have already allocated some bandwidth. This implies
that the time it takes to finish the flow is fixed, and it is equal
to the flow size divided by the allocated bandwidth. If we are
able to determine in advance the allocated bandwidth to each
flow, we know the transmission time (“length”) of this flow
and we only need to decide when to start it.

Given a transmission window of a flow and the bandwidth
allocated to it, one can easily determine the feasible sub-
window for starting this flow. Consider a flow ofβ bytes to
which a bandwidth ofB bytes/sec is allocated. Let[ts, tf ]
be one of the windows during which this flow can start and
finish. The time it takes for this flow to finish isβ/B sec.
Thus, assuming thatβ/B ≤ tf − ts, the flow should start
during [ts, tf − β/B]. This interval is now referred to asthe
feasible sub-window for starting the flow.

In [4], it is shown how to use an approximation algorithm
for TMP with a finite set of possible instances per flow in
order to approximate the original version with continuous
feasible starting sub-windows (each containing an infiniteset
of possible instances). This technique works for CAB as well.
Therefore, we start with a finite set of possible instances given
explicitly for every flow, a problem referred to as discrete CAB
and solved by our Algorithm 1. Then, we present Algorithm 2,
which extends Algorithm 1 and solves the general (continuous)
CAB problem.

Throughout the paper we assume that each input instance
is feasible if taken alone. To ensure the validity of this
assumption, all the non-feasible instances are discarded before
the algorithm commences.

We start by extending the TMP algorithm proposed in [4]
to solve the discrete version of CAB. Both problems consider
a finite number of possible instances for every flow. The algo-
rithm from [4] uses the local-ratio technique [5], [6], outlined
as follows. LetF be a set of constraints and letp(), p1(), p2()
be profit functions such thatp() = p1() + p2(). Then, if x
is an α-approximate solution with respect to(F, p1()) and
with respect to(F, p2()), it is also anα-approximate solution
with respect to(F, p()). The proof in [5] is very simple. Let

x∗, x∗
1 and x∗

2 be optimal solutions for(F, p()), (F, p1()),
and (F, p2()) respectively. Then,p(x) = p1(x) + p2(x) ≥
α · p1(x

∗
1) + α · p2(x

∗
2) ≥ α · (p1(x

∗) + p2(x
∗)) = α · p(x∗).

Algorithm 1. (solve the discrete CAB problem)
Input: a setR of all possible instances for all flows, and a
profit functionp.

1) Delete fromR all the instances with a non-positive
profit.

2) If R = ∅, return an empty schedule.
3) Let ĩ be an instance with the earliest ending time inR.

Using the value ofp(̃i), split the profit functionp into
p1 and p2 = p − p1.

4) Run recursively on the input(R, p2). Let S′ be the
returned schedule.

5) If S′ ∪
{

ĩ
}

is a feasible schedule, returnS = S′ ∪
{

ĩ
}

.
Otherwise, returnS = S′.

The most important part of Algorithm 1 is the development
of a p1 function in step (3). To this end, define a feasible
scheduleS to be i-maximal if either i ∈ S, or i 6∈ S
and S ∪ {i} is infeasible. Functionp1 is chosen such that
p2(̃i) = 0, and for a certainr > 0 every ĩ-maximal schedule
is an r-approximation with respect top1. Using the local
ratio technique, as described above, such a selection ofp1

guarantees that Algorithm 1 will return anr-approximation.
The conditionp2(̃i) = 0 ensures that the algorithm terminates
after O(|{all the instances}|) recursive invocations, since it
discards at least1 instance during every recursive call.

Let w(i) be the normalized bandwidth assigned to instance
i, i.e., the assigned bandwidth divided by the maximum link
bandwidth in the network. To define thep1 function for the
discrete CAB problem, we distinguish between the case where
every instancei ∈ R is “wide,” i.e., ∀i ∈ R : w(i) > ρ for
some fixedρ ∈ (0, 0.5], and the case where every instance
is “narrow,” i.e., ∀i ∈ R : w(i) ≤ ρ. We split the set of
instances into a subset of narrow instances and a subset of
wide instances, and invoke Algorithm 1 with a differentp1

function on each subset. Then, we choose the best solution
returned by the two independent executions of Algorithm 1 as
a solution for the general case.

Let A(i) denote the set of all instances of the flow to which
instancei belongs; these instances can never be taken together
with i. Let I(i) be the set of all instances not inA(i) that
intersecti in time and have at least one common edge withi.
Intuitively, we can see that these are the instances that have
capacity conflict withi. We view an instance of a flow also
as the set of edges along its route. Recall that our problem’s
definition allows different instances of the same flow to use
different routes.

Let E be the edge set of the network. The capacity of
an edgee ∈ E is denotedc(e). Again, we normalize the
capacities, such that∀e : c(e) ∈ (0, 1]. For everyX ⊆ E,

let c(X) = min {c(e)|e ∈ X} while c(∅)
∆
= ∞. Additionally,

let cmin(i) = min {c(i ∩ i′)|i′ ∈ I(i)}, wheremin(∅)
∆
= ∞,

and cmax(i) = max {c(i ∩ i′)|i′ ∈ I(i)}, wheremax(∅)
∆
= 0.
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Finally, define intersct(i) as the number of edges of an
instancei that also belong to an instance inI(i).

As explained above, to obtain a local ratio approximation,
the weight functionp1 should fulfill the condition that for a
certainr > 0 every ĩ-maximal schedule is anr-approximation
with respect top1. To this end, we have to give every instance
a profit that will be close to the profit it would acquire in an
arbitrary ĩ-maximal schedule. For example, every instance in
a flow to whichĩ belongs has the same profit, since there is at
most one such instance in any feasible solution. The instances
that intersect̃i have profit that is inversely proportional to
the bottleneck capacity, since this is close to the number of
such instances in añi-maximal schedule. When dealing with
narrow instances, we also consider the weight of an instancein
their profit, while for the wide instances the weight is takenas
the minimum relevant capacity. This profit definition ensures
that everỹi-maximal schedule is a good approximation of the
optimum, with respect top1. The proof of Theorem 2 below
formalizes this intuition.

We now define thep1 function for discrete CAB. The
definition is based onp(̃i), where ĩ is the instance chosen
in step (3) of Algorithm 1:

• When the algorithm runs on wide instances, for each
instancei

p1(i) = p(̃i) ·











1 i ∈ A(̃i)
1

c(i∩ĩ)
i ∈ I (̃i)

0 otherwise.

(1)

• When the algorithm runs on narrow instances, for each
instancei

p1(i) = p(̃i) ·















1 i ∈ A(̃i)
1

c(ĩ)−ρ
w(i)

c(i∩ĩ)
i ∈ I (̃i)

0 otherwise.

(2)

Let cmin
∆
= mini {cmin(i)} and intersct

∆
=

maxi {intersct(i)}. Then,

Theorem 2. Letρ < c(E); i.e., ρ is smaller than the minimum
link capacity of the network.
(a) When Algorithm 1 runs only on wide instances, the
obtained profit is at least

1

1 +
(⌈ 1

ρ⌉−1) intersct

cmin

=
cmin

cmin +(
⌈

1
ρ

⌉

− 1) intersct

of the optimum profit.
(b) When Algorithm 1 runs only on narrow instances, the
obtained profit is at least

1

1 + intersct
(c(E)−ρ) cmin

=
cmin

cmin + 1
c(E)−ρ intersct

of the optimum profit.
(c) When Algorithm 1 runs only on narrow instances and then

only on the wide instances, and the schedule with the larger
profit is chosen, the approximation ratio of the algorithm is

1

2 +
( 4

c(E)
) intersct

cmin

=
cmin

2 cmin +( 4
c(E) ) intersct

.

The proof can be found in the Appendix.
Next, we extend Algorithm 1 to address the general (con-

tinuous) CAB. The generalization applies Algorithm 1 on
feasible starting sub-windows, rather than on individual in-
stances. Throughout the profit decomposition, Algorithm 2
maintains the invariant that all the instances representedby
a feasible starting sub-window have the same profit. This
invariant requires the algorithm to split some of the feasible
starting sub-windows. To guarantee polynomial running time,
the algorithm deletes feasible starting sub-windows whose
profit becomes smaller than anǫ-fraction of their original one.
This results in a loss of up to anǫ factor in the approximation
ratio.

Before invoking Algorithm 2, we need to convert all the
windows into a set of feasible starting sub-windows for
starting each flow. This is done by considering each possible
bandwidth, and creating a feasible starting sub-window for
each bandwidth and each possible window[ts, tf ].

Algorithm 2. (A continuous version of Algorithm 1 for the
continuous CAB)
Input: a setR of all feasible sub-windows for starting each
flow, a profit functionp, and the desired approximation ratioǫ.

1) Delete fromR all the feasible starting sub-windows with
a non-positive profit.

2) If R = ∅, return an empty schedule.
3) Find the instance with the earliest ending time inR; let

this instance bẽi.
If p(̃i) < ǫ · [ the original profit of ĩ], delete the feasible
starting sub-window that contains̃i and go to step (2).
Else, using the value ofp(̃i), determine the profit func-
tion p1 as discussed later, and letp2 = p − p1. To
guarantee that all the instances of the same feasible
starting sub-window have the same profit (relative top2)
even after updatingI (̃i), split the feasible starting sub-
window into two parts: one that contains the instances
that start beforẽi ends, and another that contains the
rest of the instances.

4) Run recursively on the input(R, p2, ǫ). Let S′ be the
returned schedule.

5) If S′ ∪
{

ĩ
}

is a feasible schedule, returnS = S′ ∪
{

ĩ
}

.
Otherwise, returnS = S′.

The removal of the feasible starting sub-window that con-
tains ĩ, whose profit is smaller thanǫ times the original profit,
may reduce the approximation factor byǫ, as indicated in the
following theorem.

Theorem 3. Letn be the total number of feasible sub-windows
for starting a flow, each associated with a starting time and
a bandwidth. For anyǫ > 0, Algorithm 2 guarantees a
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Fig. 1. Asymptotic bound on the running time of Algorithm 2

1

1+
( 2

c(E)
) intersct

cmin

−ǫ = cmin

cmin +( 2
c(E)

) intersct
−ǫ approximation for

the wide instances and 1
1+ 2 intersct

c(E) cmin

−ǫ = cmin

cmin +2 intersct /c(E)−

ǫ for the narrow instances. Thus, by choosing a schedule with a
larger profit, we get a cmin

2 cmin +( 4
c(E)

) intersct
− ǫ-approximation.

In addition, the running time of the algorithm isO(n2·|E|
ǫ ).

The proof can be found in the Appendix.
To get a better idea of how the time complexity of Algo-

rithm 2 grows, in Figure 1 we plot the asymptotic bound on the
running time,n2·|E|

ǫ , as a function of the number of feasible
sub-windows for starting a flow. Each curve corresponds to
a certainǫ value. In this graph, we useE = 50, and the
maximum number of feasible sub-windows is 1,000.

IV. T HE NETWORK ASSIGNEDBANDWIDTH (NAB)
SCHEDULING PROBLEM

We now consider the scheduling problem for the NAB
model, where bandwidth is allocated to flows by the network.
To make the discussion general, we assume that there exists a
bandwidth allocation functionf , such as max-min fairness,
which determines the bandwidth allocated to each flow at
every time, and guarantees that the total bandwidth allocated
to all the flows that share the same link at a given time does
not exceed the link capacity.

Problem 2 (NAB)

Input: The same as in CAB (Problem 1), except that pos-
sible bandwidth rates are not given. Instead, the scheduler
is given a dynamic bandwidth allocation functionf .

Objective: Determine a routing path and a transmission
time for each flow, such that the total profit is maximized,
assuming that bandwidth allocation is based onf . A flow
is said to acquire its corresponding profit if it starts after
the release time of a window and finishes before the
deadline of the same window.

There are two important differences between CAB and NAB:

1) In NAB, the bandwidth allocated to a flow is not
necessarily fixed for the entire lifetime of a flow.

2) In NAB, bandwidth allocation is not determined by the
controller.

Like CAB, NAB is NP-hard and does not admit a PTAS if
P 6= NP.

Theorem 4. NAB is MAX SNP-hard even in the special case
where the network has a single edge of unit capacity, all the
flows have the same size, there are2 windows per flow that
do not intersect (in time), and the profits of all windows are
unitary.

Proof: The proof is similar to that of Theorem 1.
We start with an online greedy algorithm for NAB:

Algorithm 3. (An online greedy algorithm for NAB)
1) When the release timet of a windoww of an unsched-

uled flow is reached: schedule this flow into the network
at t over the path ofw if the following two conditions
hold:

(c1) the bandwidth share to be acquired by this flow
on the path ofw allows the flow to finish before
the deadline associated withw.

(c2) the bandwidth acquired by this flow does not
prevent any running flow from finishing on time.

2) When a flow finishes at timet, let W be the set of
windows for which the following holds (a) everyw ∈ W
belongs to a non-scheduled flow; (b) the release time of
everyw ∈ W is ≤ t and the deadline is≥ t. Try to
schedule the windows ofW at t, one by one, in the order
of their release times. A windoww can be scheduled if
conditions (c1) and (c2) above hold for it. If a window
is scheduled, all the other windows associated with the
same flow are removed fromW .

Note that if there are multiple relevant windows in step (1)
of the algorithm, as would be the case if flows have multiple
possible paths, these windows can be examined in any arbi-
trary order.

Algorithm 3 is an online algorithm. Thus, the scheduler can
make a scheduling decision without knowing in advance the
future flows. To use this algorithm offline, the controller needs
to sort all the windows in ascending order of their release
times.

Let m be the total number of flows and letn be the total
number of windows of all the flows. The running time of
Algorithm 3 isO(m log(m)nt(m,E)), wheret(m,E)) is the
time needed to verify that a certain flow can be admitted
without violating the termination time of previously admitted
flows. For instance, if bandwidth is allocated by the network
according to max-min fairness,t(m,E) = m2 |E| and the
total running time isO(m3n |E|).

Lemma 1. Regardless of how flows are chosen in step (2), for
every dynamic allocationf and for anyǫ > 0, there exists an
instance of NAB for which the profit of the schedule returned
by Algorithm 3 is< ǫ×OPT, whereOPT is the optimum profit.
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Proof: Consider a network with a single edge whose
capacity is1. Suppose there are only two flows to schedule.
The first flow is released att = 0, has a deadline att = 1,
a size of1, and a profit ofǫ/2. The second flow is released
at t = 0.1, has a deadline at1.1, a size of1, and a profit of
1. Obviously, only one flow can be scheduled. Forǫ < 2, the
optimal solution is to schedule the second flow at its release
time, which yieldsOPT = 1. However, Algorithm 3 schedules
the first flow, thereby obtaining a profit ofǫ/2 < ǫ × OPT.

Next, we modify Algorithm 3 into a2-phase offline greedy
algorithm. In the new algorithm the transmission flows are
preordered according to some criterion, such as release time,
profit, etc. Then, the algorithm goes over the ordered list and
considers one flow at a time. For each considered flow, the
algorithm checks whether it can be scheduled into the network
upon its release time without disturbing already scheduled
flows. If so, the flow is scheduled. In the second phase, the
algorithm tries to schedule each non-scheduled flow.

Algorithm 4. (An offline greedy algorithm for NAB)

1) Sort all the windows of all the flows in advance, ac-
cording to some criterion to be discussed later. Let the
sorted list beU .

2) Go over the sorted list. For each windoww, perform as
follows

• Schedulew into the network at its release timet if
the following two conditions hold:

(c1) the bandwidth share to be acquired by this
flow on the path ofw allows the flow to finish
before the deadline associated withw.

(c2) scheduling the flow ofw into the network at
t does not prevent flows that have already
been scheduled from finishing on time;

• When a flow of a windoww is scheduled, remove
from U all the windows associated with the same
flow, and add the instance to the listS.

• Update the termination time of each instance inS
and sort the flows in this list in ascending order of
their termination times.

3) While S is not empty do:

a) Let t be the termination time of the first instance
in S. SinceS is sorted in ascending order of in-
stance termination times, this instance is the first to
terminate from all the instances inS. Remove this
instance fromS and try to schedule unscheduled
flows in the following way.

b) Try to schedule the windows ofU at t, one by one,
in their sorted order. A windoww can be scheduled
if conditions (c1) and (c2) above hold for it. If a
window is scheduled, remove this window and all
the other windows associated with the same flow
from W . In addition, update the termination time
of each instance inS and sort this list again.

In practice, the running time of Algorithm 4 is shorter than
of Algorithm 3. However, their asymptotic running times are

equal if we ignore the sorting phase of Algorithm 4. Recall
that when Algorithm 3 is executed offline, its input windows
must also be sorted according to their starting times.

Lemma 2. Suppose that theU list in Algorithm 4 is sorted in
a decreasing order ofαβγ

δ , whereα, β, γ and δ are defined
for every windoww as follows: (a) α is either 1 for all
the windows, or equal top(w); (b) β is either 1 for all the
windows, or equal to the minimum capacity on the path ofw;
(c) γ is either1 for all the windows or equal tod(w)− r(w),
where r(w) and d(w) are the release time and deadline of
w; and (d) δ is the size of the corresponding flow. Then, for
every dynamic allocationf and for anyǫ > 0 there exists an
instance of NAB with one window per flow for which the profit
of the schedule returned by Algorithm 4 is< ǫ × OPT, where
OPT is the optimum profit.

Proof: If α = β = γ = δ = 1, then the scheduling is
arbitrary and the claim holds. We next prove the lemma for
the case whereδ 6= 1. Consider a network with a single edge
of a unitary capacity and two flows. The first flow is released
at t = 0, has a deadline att = 1, a size ofǫ/3, and a profit
of ǫ/2. The second flow is released att = 0, has a deadline
at 1, a size of1, and a profit of1. Obviously, only one flow
can be scheduled. For every0 < ǫ < 2, the optimal solution
is to schedule the second flow at its release time, which yields
OPT = 1. However, Algorithm 4 schedules the first flow at its
release time, thereby obtaining a profit of onlyǫ/2 < ǫ×OPT.

Next, we prove the lemma for the case whereα 6= 1 and
δ = 1. Consider a network with a single edge of a unitary
capacity andn + 1 flows. The first flow is released att = 0,
has a deadline att = 1, a size of1, and a profit of1. Each
of the remainingn flows is released att = 0, has a deadline
at 1, a size of 1n , and a profit of0.9. The algorithm schedules
only the first flow, thereby obtaining a profit of1, while the
optimum solution is to schedule the othern flows, obtaining a
profit of 0.9n. For a large enoughn, 1 < ǫ× OPT = ǫ× 0.9n.

Finally, we prove the lemma for the case whereβ · γ 6= 1
(i.e., β 6= 1 or γ 6= 1). Consider a network with a single edge
of a unitary capacity and two flows. The first flow is released
at t = 0, has a deadline att = 1.1, a size of1, and a profit
of ǫ/2. The second flow is released att = 0, has a deadline
at 1, a size of1, and a profit of1. Obviously, only one flow
can be scheduled. Therefore, for every0 < ǫ < 2, the optimal
solution is to schedule the second flow at its release time,
obtainingOPT = 1, while Algorithm 4 schedules the first flow
at its release time, obtaining a profit of onlyǫ/2 < ǫ × OPT.

V. CAB VS. NAB: SOME SPECIAL CASES

In this section we compare the optimal solution for CAB
to the optimal solution for NAB. The results of such a
comparison cannot be easily predicted because each model
has its own advantages and disadvantages. CAB is more
flexible because its allocation is not restricted by the “external”
dynamic allocation rule. On the other hand, CAB’s allocated
bandwidth is fixed for the whole lifetime of an instance
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whereas in NAB the bandwidth is dynamically adapted to the
actual load and availability.

In the following we show that in the special case where
every flow has a single window, all the flows share the same
route, and they all have the same release time, then the two
optimal values are equal, provided that the possible bandwidth
rates includec(J) for each flowJ . This result holds regardless
of how bandwidth is allocated by the network to the scheduled
flows in the NAB model.

Given an instanceΠ of CAB and NAB, denote the profit
of its optimum solution byOPT(CAB)(Π) andOPT(NAB)(Π)
respectively.

Lemma 3. When every flow has a single window, all the flows
share the same route, all the flows have the same release time,
and for each flowJ the bandwidth ratec(J) can be allocated
by CAB, the following holds:

OPT(CAB)(Π) = OPT(NAB)(Π).

Proof: Recall thatc(J) is the bottleneck of the path of
flow J . This path is unique in the considered case becauseJ
has only one window. We decompose the proof into two parts.
In the the first part we show that under the conditions above,
OPT(NAB) ≥ OPT(CAB) holds. The second part shows the
other direction.

Let the release time of all the flows bet = 0, and let
e be the edge with the minimum capacity along the shared
path. Let the sequence of instancesi1, i2, . . . , in be a feasible
CAB schedule. Eachik starts after the release time (0) and
finishes before the deadline of the considered flow. We now
construct a schedule for NAB using the following procedure.
We start witht = 0 and go over the scheduled instances in a
non-decreasing order of their termination times. Let this order
be i1, i2, . . . , in. Then, for k = 1, 2, . . . , n we perform the
following two steps. First, we denote the flow to whichik
belongs asJk, and schedule it at timet. Second, we sett to
be the finishing time ofJk if this flow was running alone.

We now show that when the bandwidth is allocated accord-
ing to this procedure, all the flows finish by their deadlines.
We show this by induction on the iterations of the procedure.
Before reschedulingJ1, all the rescheduled flows (∅) have
finished by their deadlines. Thus, the induction basis holds.
Assuming the claim holds for the firstk rescheduled flows, we
now prove it for the(k + 1)th flow. Suppose, on the contrary,
that the claim does not hold for this flow; namely, that just
before reschedulingJk+1 at time t, d(Jk+1) − t < s(Jk+1)

c(e)

holds, wheres(J) is the size of flowJ . In other words,
the time until the deadline ofJk+1 is not enough for the
completion of this flow even if it was the only flow in
the network. However, sincet =

∑

l=1,...,k
s(Jl)
c(e) , we get

d(Jk+1) <
P

l=1,...,k+1 s(Jl)

c(e) , which contradicts the assumption
that i1, i2, . . . , in is a feasible schedule in the CAB model,
taken in the non-decreasing order of the flows’ finishing times,
such that all of them start after the release time and finish not
later than by their respective deadlines.

The proof of the other direction, i.e., thatOPT(NAB) ≤
OPT(CAB), is similar, except for the following changes:
• We are given a schedule of NAB where every scheduled
flow starts after its release time (0) and finishes not later than
its deadline. We construct a schedule for CAB by a procedure
that is completely analogous to the one described earlier.
• We go over the scheduled flows in a non-decreasing order of
their finishing times. Each flowJ is rescheduled to run using
the bandwidth ofc(J), which is the maximum bandwidth it
can use.

We next show that under a different set of conditions, we can
state thatOPT(CAB)(Π) ≥ OPT(NAB)(Π). For this set of con-
ditions, it can be shown thatOPT(CAB)(Π) ≤ OPT(NAB)(Π)
does not necessarily hold.

Lemma 4. When every flow has a single window, all the
flows have the same release time and deadline, and CAB
allows every bandwidth to be allocated,OPT(CAB)(Π) ≥
OPT(NAB)(Π) even if flows do not necessarily share the same
route.

Proof: Suppose that all the release times are att = 0
and all the deadlines are att = 1. Let t1, t2, . . . , tn be a
feasible NAB schedule. In this schedule,tk > 0 is the starting
time of flow Jk and every flow finishes beforet = 1. We
now construct a CAB schedule by the following procedure.
For eachk = 1, 2, . . . , n, allocate to the instances ofJk that
begin att = 0 a bandwidth ofs(Jk)

1−0 = s(Jk), wheres(J) is
the size of flowJ . This instance will finish exactly byt = 1.

It is left to prove that the obtained CAB schedule is
feasible. Suppose, to the contrary, that there exists an edge
e whose capacity is exceeded, i.e.,

∑

J|e∈J s(J) > c(e),

or equivalently,
P

J|e∈J s(J)

c(e) > 1. But this contradicts the
assumption thati1, i2, . . . , in is a feasible NAB schedule.

VI. SIMULATION STUDY

A. The Simulated Algorithms

In this section we present a simulation study, in order to
address the three challenges first raised in Section I:

• Deciding what are the best algorithms for CAB and NAB.
• Deciding whether there is a significant performance ad-

vantage to NAB, although we know that their running
time renders them impractical.

• Understanding the correlation between the width of the
flows’ windows and the performance of the scheduler.

The algorithms simulated in this section are as follows:
Alg-2 (for CAB): This algorithm implements Algorithm 2
on the wide instances and on the narrow instances. Then, it
chooses the schedule with the largest profit to guarantee the
approximation ratio stated in Theorem 3. After choosing either
the narrow or the wide instances, the algorithm tries to improve
the solution by adding non-selected instances. To this end,the
algorithm sorts the non-selected instances in descending order
of the ratio between their profit and size. Recall that each such
an instance is already associated with a specific bandwidth
allocation.
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Alg-3 and Alg-4 (for NAB): These algorithms implement
Algorithm 3 and Algorithm 4, respectively. In Alg-4, the
windows inU are sorted in a decreasing order of

p(w)c(w)(d(w) − r(w))

s(w)
,

where for every windoww, p(w) is the window’s profit,
c(w) is the minimum capacity on its path,r(w) and d(w)
are its release time and deadline, ands(w) is the size of
the flow of w. The intuition is to generalize the well-known
greedy algorithm for the Knapsack problem, which aims at
maximizing the profit of the items chosen for a knapsack
with a given capacity [14]. In the Knapsack problem each
item J only has a profitp(J) and a sizes(J), and the
items are sorted according top(J)/s(J), which indicates the
profit per size unit. In our problem we want to take into
account two additional parameters: the width of each window
d(w) − r(w) and the availability of resources along the path,
which is represented byc(w). In general, windows whose
d(w) − r(w) is wider and whosec(w) is bigger can be more
easily scheduled, and therefore their “overall schedulingcost”
is smaller. Thus, we put both factors in the numerator of our
sorting criterion.

Even if we assume that bandwidth is shared according to
max-min fairness, in which caset(m,E) = m2 |E| holds,
the running time of both algorithms renders them impractical
also for the simulations. To speed up these algorithms, we
slightly change them as follows. First, the rescheduling phase
is executed only until the first time it succeeds. Second, when
a flow terminates, we invoke the rescheduling phase only if
sufficient time has elapsed since the previous rescheduling
attempt. Third, a rescheduling is attempted only for flows
whose path shares at least one edge with the path of the
terminating flow. While these enhancements do not improve
the asymptotic running time of the algorithms, they improve
the actual time and make them feasible for our simulation
study.

Alg-5 and Alg-6 (for CAB): These algorithms are the
CAB equivalent of Alg-3 and Alg-4 respectively, without the
speedup enhancements mentioned above. In contrast to Alg-3
and Alg-4, Alg-5 and Alg-6 need to determine the bandwidth
allocated to each scheduled flow. This bandwidth is chosen to
be the widest possible bandwidth available along the path from
the source to the destination. We will also discuss a version
of Alg-5 and of Alg-6 where the allocated bandwidth is the
narrowest that allows the flow to finish on time.

B. Simulation Model

Because we have to make many decisions about the simu-
lation model, and it is impossible to present and discuss the
results for all possible combinations, we focus here on data-
centers connected by a backbone and assume that the backbone
is the bottleneck. This is a reasonable assumption because the
backbone consists of long-distance, expensive links. Thus, we
abstract each datacenter as a node in the backbone graph. We
build the backbone graph using Waxman’s model [22] in the

following way3. We first randomly place 30 network nodes in a
1.0∗1.0 plane, uniformly and independently. The probability to
have an edge with a unit capacity between every pair of nodes
is a · exp(−d

b·L ), whered is the Euclidean distance between the
two nodes,L is the maximum Euclidean distance between any
two nodes,a = 0.25, andb = 0.5. With these parameters, the
average number of edges in each simulated graph is≈ 90. If
the resulting graph is not connected, it is ignored and a new
graph is drawn.

We start with the case where the controller is given only one
window for each flow, and then study the case where every
flow has multiple windows, each with different times and/or
paths. The release time for this possible window is randomly
chosen according to the uniform distribution between 0 and
100, namely,U [0, 100]. As already indicated, the width of the
possible window is an important performance parameter of the
various algorithms. Therefore, we will show several graphs
with different widths: U [5, 30] (i.e., the width is randomly
chosen between 5 and 30 using uniform distribution),U [5, 55],
andU [5, 15]. We use two approaches to assign profit to flows.
In the first, the profit is randomly chosen according toU [0, 10].
In the second, the profit is a product of a random number
chosen fromU [0, 10] and the flow’s size.

Each point on each graph is an average of 20 different
experiments with the same parameters. In all the graphs we
show the “normalized profit” as a function of the “normalized
load.” To compute the normalized profit, we calculate the total
profit obtained by each algorithm and divide this by the total
profit of all the flows. To determine the normalized load, we
first compute the load imposed by each flow as the flow’s size
multiplied by the length of the shortest path from the flow’s
source and destination. We then sum up the loads of all the
flows and divide the result by the network capacity. The latter
is defined as the aggregated bandwidth of all the network links
multiplied by the time elapsed between the first release time
and the last deadline. To increase the normalized load, we
either increase the number of flows or increase their average
size. The decision does not affect the results.

C. Simulation Results

As indicated earlier, one of our goals is to understand the
strength of the correlation between the scheduler’s flexibility
and performance. The scheduler’s flexibility is represented by
the ratio between the average width of the possible windows
and the total time. This ratio is referred to as the “flexibility
ratio.” Obviously, the scheduler has more flexibility when this
ratio is closer to 1.

We start with the case where the possible window is
randomly chosen for each flow according toU [5, 30], and
the total time is 130. This implies that the flexibility ratio
is 0.5 · (30 + 5)/130 = 0.13. This case is presented in the
two graphs of Figure 2. As expected, for all the algorithms,
an increase in load results in a decrease in normalized profit.

3Waxman’s model is very often used to abstract network backbones.
However, when we used other models, we did not notice importantdifferences.
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Fig. 2. Performance of the various algorithms for flexibility ratio= 0.13

This is simply because we try to accommodate more and more
flows during the same interval and therefore using the same
capacity. Note that when the load increases, the total profitalso
increases (this graph is not shown) because the scheduler has
more flows to choose from. However, the fraction of scheduled
flows decreases. It is also evident that the relative performance
of the various algorithms is not affected by the load.

The performance of the CAB algorithms is shown in Fig-
ure 2(a), and of the NAB algorithms in Figure 2(b). For the
CAB algorithms, the best performance is obtained by Alg-2,
which is based on the algorithms developed in Section III.
The second best is Alg-5, which also performs better than
Alg-6. The superior performance of Alg-5 over Alg-6 and,
equivalently, of Alg-3 over Alg-4 in Figure 2(b), might come
as a surprise because Alg-3 and Alg-5 are online algorithms
while Alg-4 and Alg-6 are offline algorithms. However, the
advantage of Alg-3 and Alg-5 can be attributed to the fact
that they receive the flows sorted in ascending order of release
times. Thus, both algorithms try to schedule every flow from
the moment this flow is ready for transmission.

Figure 2(a) also shows the performance of two algorithms
that have not been mentioned earlier: reverse Alg-5 and
reverse Alg-6. Recall that when Alg-5 and Alg-6 sort the
flows, they need to determine the bandwidth allocated to each
scheduled flow. This bandwidth is chosen to be the widest
possible bandwidth available along the path from the source
to the destination. In contrast, the reverse versions of these
algorithms choose the narrowest bandwidth that allows the
flow to finish on time.

Figure 3(a) shows the same curves of Alg-2, Alg-3 and
Alg-5 from Figure 2(a) and (b), in order to compare the
performance of CAB vs. NAB for flexibility ratio of 0.13.
We can see that the best CAB algorithm (Alg-2) performs
better than the best NAB algorithm (Alg-3) for high loads
(> 0.5), whereas for low loads the situation is reversed. The
graph shows two new curves: of Alg-4’ and Alg-6’. These
two algorithms are similar to Alg-4 and Alg-6 respectively,
with the only change that in their second phase these two

algorithms sort the instances according to their release times
and attempt to schedule new instances whenever a scheduled
instance ends. Thus, these algorithms imitate the second phase
of Alg-3 and Alg-5. We still see that the performance of Alg-3
and Alg-5 is significantly better than that of Alg-4’ and Alg-6’,
which indicates that the advantage of these algorithms should
be attributed to their first phase, were they sort the instances
according to the instances’ release times. To compare the
actual running times of the various algorithms, we measured
them (in milliseconds) on an Intel2.8 GHz computer with
Windows 7. The results are presented in Figure 3(b) when full
load is obtained by 350 flows and each algorithm is executed
20 times for each input set. We observe that the running times
of the NAB algorithms are significantly longer than those of
the CAB algorithms.

Figure 4(a) shows the performance of the best CAB and
NAB algorithms when the flexibility ratio increases to0.5 ·
(55 + 5)/155 = 0.19. This ratio is obtained by drawing the
width of the possible windows fromU(5, 55) and extending
the total time to 155. All the other parameters are identical
to those of Figure 2. When we compare Figure 4(a) to Fig-
ure 3(a), we see that the performance is indeed considerably
better for all the algorithms. This indicates that by givingthe
scheduler enough flexibility, we can increase its performance
even for light loads. Another interesting observation can be
made with regard to the performance of CAB vs. NAB. While
in Figure 2 we see that the best NAB algorithms perform
slightly better than the best CAB algorithms, in Figure 4(a)this
situation is reversed.This interesting observation indicates that
the CAB algorithms are more sensitive to small flexibility fac-
tors than their NAB counterparts.To verify this observation,
we decrease the flexibility ratio to0.5 · (15 + 5)/115 = 0.11.
The results are presented in Figure 4(b). Indeed, we can see
that all the algorithms perform worse than in Figure 2, and that
the difference in performance between the best CAB algorithm
and the best NAB algorithm is now 10%, compared to less than
5% in Figure 2.

In Figure 5 we repeat the same experiment as in Figure 2,
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Fig. 4. CAB vs. NAB for two different flexibility ratios

except that the profit of each flow is proportional to the flow’s
size. While we see a drop in the performance, the relative
behavior of the various algorithms does not change compared
to Figure 2. The performance drop can be explained by the
fact that in this case the bigger flows are assigned more profit
than in the previous case, but their possible window times do
not change.

Recall that in all the simulations described so far we used
only one possible transmission window for each flow. We
now show simulation results for the case where each flow
has multiple possible transmission windows, not necessarily
with the same profit. In Figure 6(a) we consider the same
simulation setting as in Figure 2, except that every flow now
has three possible transmission windows, each associated with
a different path. The first path is chosen to be a shortest path
(as in Figure 2). For the second path, a random intermediate
nodev is chosen and a shortest path from the source tov is
used, followed by a shortest path fromv to the destination
(this is the concept known as 1-hub routing [8]). A different
random intermediate nodev′ is chosen for the third path; once
again, a shortest path from the source tov′ is used, followed by

a shortest path fromv′ to the destination. We see asubstantial
improvementfor both models and for all normalized load
values. For example, for Alg-2 (CAB), the normalized profit
increases from 0.44 to 0.75 when the normalized load is 0.2
and from 0.44 to 0.5 when the normalized load is 0.5.

The simulation setting for Figure 6(b) is similar to that
in Figure 6(a), except that for each possible transmission
window the profit depends on the length of its path; i.e.,
we multiply the flow profit by 1/pathlength. This gives the
scheduler motivation to prefer transmission windows whose
path is short compared to other transmission windows of the
same flow. By comparing Figure 6(b) to Figure 6(a), we
seean additional substantial improvementfor both CAB and
NAB, for all traffic loads.

Finally, Figure 6(c) shows results for the same simulation
setting as in Figure 6(a), but this time higher profit is
assigned to transmission windows with earlier release time.
We do this by assigning different release times to the three
possible transmission windows and multiplying the profit of
the window with the first release time by 1, the profit of the
window with the second release time by 1/2, and the profit
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Fig. 5. Performance of the various algorithms for flexibility ratio= 0.13 (but profit is proportional to the flow size)

of the window with the third (latest) release time by 1/3.
By comparing Figure 6(c) to Figure 6(a), we see again an
additional substantial improvement for both CAB and NAB,
and for all traffic loads. We also see that for light loads the
performance in Figure 6(c) is better than that in Figure 6(b)
and vice versa.

We can summarize this section as follows:

1) Our new approximation algorithm (Algorithm 2) is the
best algorithm for CAB, not only because it is faster,
but also because it yields the top performance.

2) The most important factor in the performance of all the
algorithms is the length of the possible windows.

3) Even if the NAB scheduler has full knowledge of the
exact bandwidth allocated by the network to every
flow, the NAB algorithms perform better than the CAB
algorithms only for low loads and large flexibility ratio
values.This indicates that CAB scheduling is the best
model for inter-datacenter flow scheduling.

4) By allowing each flow to be scheduled over one of
multiple (three) different transmission windows, we can
substantially increase the performance. Moreover, by
tuning the profit of each window according to attributes
such as path length and release time, further substantial
improvement is obtained.

VII. C ONCLUSIONS

In this paper we defined and addressed a new scheduling
problem, called CAB. This problem arises when many data-
centers need to transfer astronomical amounts of data among
themselves on a timely basis. We proved that this problem
is not only NP-hard, but that it also does not admit a PTAS.
Then, we developed an efficient approximation algorithm and
two heuristics for solving it. We also defined a related problem,
called NAB-scheduling, which differs from CAB-scheduling
in the way bandwidth is assigned to flows. Our approximation
algorithm was not only faster than the heuristics, but was
also shown to perform better. We also showed that the NAB

algorithms, whose implementation is impractical, have no per-
formance advantage compared to the CAB algorithms. Thus,
we believe that CAB is the best model for inter-datacenter
scheduling, which means that a TCP− protocol should be used
in the Transport layer, and bandwidth should be allocated to
the scheduled flows by the controller and not by the network.

APPENDIX

The Proof of Theorem 2

The first two parts of the theorem are proven by first
showing that everỹi-maximal schedule is an appropriate
approximation with respect top1, and then applying the local
ratio technique to prove the approximation ratio by induction
on the algorithm’s invocation.

To prove part (a) of the theorem, we start with three lemmas.

Lemma 5. If for every instancei : w(i) > ρ, then at most
⌈

1
ρ

⌉

− 1 instances can be scheduled at the same time on the
same edge.

To prove this lemma, we schedule at least
⌈

1
ρ

⌉

instances
at the same time. Then, their aggregated bandwidth is larger
than ρ 1

ρ = 1, which is the maximum normalized capacity of
an edge.

Lemma 6. ∀S : p1(S) ≤ p1(̃i) ·

(

1 +
α(⌈ 1

ρ⌉−1)·intersct(̃i)

cmin (̃i)

)

.

To prove this lemma, we note that the boundp1(S) ≤ p1(̃i)·
bopt holds for

bopt = 1 + α(

⌈

1

ρ

⌉

− 1) ·
∑

e|e∈i∩ĩ for i∈I(̃i)

1

cmin(̃i)

= 1 +
α(

⌈

1
ρ

⌉

− 1) · intersct(̃i)

cmin(̃i)
.

Obviously, we can take at most one instance fromA(̃i) in
any solution. Moreover, from Lemma 5 it follows that, for
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Fig. 6. Performance of the best CAB/NAB algorithms when each flow has three possible transmission windows

every edge common tõi and to an instance inI (̃i), we can

add at most
⌈ 1

ρ⌉−1

c(i∩ĩ)
to the profit. This lemma is relevant since

by the choice of̃i, all the instances that intersect with̃i in
time also intersect with each other.

Lemma 7. For every ĩ-maximal S, p1(S) ≥ p1(̃i) ·

min
{

1, 1
cmax (̃i)

}

holds.

This lemma holds because anyĩ-maximal solution either
contains an instance ofA(̃i) or an obstructing instance from
I (̃i).

We now prove part (a) of the theorem. From Lem-
mas 6 and 7 we obtain an approximation ratio of at least

1

1+
(⌈ 1

ρ⌉−1) intersct(ĩ)

cmin(ĩ)

= cmin (̃i)

cmin (̃i)+(⌈ 1
ρ⌉−1) intersct(̃i)

, which can be

simplified to:

1

1 +
(⌈ 1

ρ⌉−1) intersct

cmin

=
cmin

cmin +(
⌈

1
ρ

⌉

− 1) intersct
.

To prove part (b) of the theorem, we need the following two
lemmas.

Lemma 8. For every S, p1(S) ≤ p1(̃i) ·
(

1 +
1

c(ĩ)−ρ
·intersct(̃i)

cmin (̃i)

)

holds.

To prove this lemma, we note thatp1(S) ≤ bopt holds
for bopt = 1 + 1

c(̃i)−ρ

∑

e|e∈i∩ĩ, for i∈I(̃i)
1

cmin (̃i)
= 1 +

1
c(ĩ)−ρ

·intersct(̃i)

cmin (̃i)
, because we can take at most one instance

from A(̃i) in a feasible solution. Also, for every edge common

to ĩ and an instance inI (̃i), we can add at most
1

c(ĩ)−ρ

c(i∩ĩ)
to the

profit. This is because of the capacity constraints, and because
all the instances that intersect withĩ in time also intersect with
each other.

Lemma 9. For every ĩ-maximal S, p1(S) ≥ p1(̃i) ·

min
{

1, 1
cmax (̃i)

}

holds.

This lemma holds because anyĩ-maximal solution contains
an instance ofA(̃i) or some obstructing instances fromI (̃i)
whose total bandwidth is more thanc(̃i) − w(̃i) ≥ c(̃i) − ρ.

We now prove part (b) of the theorem. From Lemmas 8
and 9 we obtain an approximation ratio of at least

1

1 + intersct(̃i)

(c(E)−ρ) cmin (̃i)

=
cmin(̃i)

cmin(̃i) + 1
c(E)−ρ intersct(̃i)

≥
1

1 + intersct
(c(E)−ρ) cmin

=
cmin

cmin + 1
c(E)−ρ intersct

.

To prove part (c) of the theorem, we need the following
lemma, which extends a result from [4]:

Lemma 10 (Combining Approximations). Given a 1
α -

approximation solution for a subset of the input elements
and a 1

β -approximation solution for all the remaining input
elements, we obtain a 1

α+β -approximation for the whole set
by choosing the solution with the larger profit.

To prove this lemma, denote the two subsets of input
elements byA1 and A2. Let the output schedule of the1α -
approximation forA1 beS1, and the output schedule of the1β -
approximation forA2 be S2. Let S∗ be an optimal solution
for the whole input setA. Either p(S∗ ∩ A1) ≥ α

α+β p(S∗)

or p(S∗ ∩ A2) ≥ β
α+β p(S∗) must hold. Therefore, either

p(S1) ≥ 1
α · α

α+β p(S∗) = 1
α+β p(S∗) or p(S2) ≥ 1

β ·
β

α+β p(S∗) = 1
α+β p(S∗) holds. Thus, a solution with the

greater profit is a 1
α+β -approximation for the whole setA.

We now prove part (c) of the theorem. By setting
ρ = 0.5c(E), we obtain the ratio of 1

1+
( 2

c(E)
) intersct

cmin

=

cmin

cmin +( 2
c(E)

) intersct
for the wide subset and 1

1+ 2 intersct
c(E) cmin

=
cmin

cmin +2 intersct /c(E) for the narrow subset. Then, part (c)
follows directly from Lemma 10.

The Proof of Theorem 3

For ǫ = 0, the algorithm acts as Algorithm 1 would act on an
infinite number of instances. Since Theorem 2 and Lemma 10
are correct even for an infinite number of instances, the claim
holds in this case. Whenǫ > 0, the approximation ratio of
Algorithm 2 is reduced by a factor of1− ǫ. The proof in this
case is similar to that proposed in [4], and is briefly presented
to keep our paper self-contained.

Since we can partition the windows to the finally obtained
windows before the algorithm begins, we can assume without
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loss of generality that the algorithm never splits windows.
Call a window that is deleted during the execution of step (3)
of the algorithm a “bad window.” When a bad windowτ is
selected (and deleted), letǫτ be its profit. Consider now how
the algorithm runs and how it would have run if we changed
the profit of every bad windowτ to p(τ) − ǫτ and invoked a
precise algorithm (the same algorithm, but without deletions in
step (3). The precise algorithm can run in the second scenario
exactly as the deleting algorithm would do in the first scenario
with regard to what is chosen and the final schedule, except
that the profit of every bad windowτ that has not yet been
deleted in the first scenario will be higher byǫτ than its profit
in the second scenario. Letp and p′ be the profit functions
in both scenarios andpOPT and p′OPT be the optima in both
scenarios, respectively. For any feasible scheduleD, p(D) ≥
p′(D) ≥ (1 − ǫ)p(D), and therefore,p′OPT ≥ (1 − ǫ)pOPT. So,
if the solutionS of the precise algorithm isr-approximation,
then p(S) ≥ p′(S) ≥ rp′OPT ≥ r(1 − ǫ)pOPT, and the solution
returned by our algorithm isr(1 − ǫ)-approximation.

To prove the running time, we extend the analysis of [4]
(Section 3.3.1). Thus, we follow their stack-based iterative
implementation. At the first phase, we pushĩ onto a stack
and iterate till there are no more instances. At the second
phase, we pop the items from the stack, adding them if they do
not violate the feasibility. Since the algorithm deletes atleast
one window during each iteration, the number of iterations is
bounded by the number of windows (we treat a split window
as two windows). This number is less thann2

ǫ , because the
number of non-empty iterations is at mostn

ǫ . Note that the
instances whose weight is< ǫ of their original profit can be
removed while updating the profits. Thus, their removal does
not affect the asymptotic complexity. Consider a non-empty
iteration. Choosing̃i takesO(n) and updating the profits takes
O(n |E|). Thus, the first phase takesO(n2|E|

ǫ ). The second
phase unwinds a stack whose size isO(n

ǫ ), since it was
built only by non-empty iterations. Checking the feasibility of
adding an instance that is known to end first takesO(|E|n).
Thus, the second phase takesO(n2|E|

ǫ ) time, and the whole

algorithm takesO(n2|E|
ǫ ) time.
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