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Abstract

The paper proposes local and global optimization schemes for efficient TCP buffer allo-
cation in an HTTP server. The proposed local optimization scheme dynamically adjusts the
TCP send-buffer size to the connection and server characteristics. The global optimization
scheme divides a certain amount of buffer space among all active TCP connections. These
schemes are of increasing importance due to the large scale of TCP connection characteris-
tics. The schemes are compared to the static allocation policy employed by a typical HTTP
server, and shown to achieve considerable improvement to server performance and better
utilization of its resources. The schemes require only minor code changes and only at the
server.
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1 Introduction

HTTP requests are the most popular way to retrieve information over the Internet. An HTTP

transaction consists of one or more TCP connections that are established between a client and

a server. The performance of an HTTP server depends, to large extent, on the availability and

usage efficiency of resources like bandwidth, CPU and memory. An important and extensively

discussed issue is how to tune an HTTP server to use its resources efficiently, in order to achieve

maximum performance.

In a typical HTTP server, the major components of the main memory are the operating

system kernel, the server processes and a file cache. An important part of the kernel space is

dedicated to network buffers, that are mainly employed by the server as TCP send-buffers. In

a common HTTP session, the server copies the requested data to the TCP send-buffer. From

there, the data is forwarded to the client by the output routines of the TCP stack. When the

requested data is larger than the send-buffer size, this procedure is repeated until the whole

transfer is completed.

A typical HTTP server can handle hundreds of HTTP requests simultaneously. Since each

HTTP session runs over one or more dedicated TCP connections, and each connection uses a

separate TCP send-buffer, all active connections must somehow share the limited amount of

main memory reserved for TCP buffers. These buffers cannot be stored on a secondary storage,

even if they were not a part of the kernel space. This is because of the excessive latency penalty

caused by the access to the secondary storage.

This paper addresses the issue of main memory allocation to the send-buffers of active TCP

connections in an HTTP server or proxy server. In particular, it concentrates upon the following

two issues:

1. Local optimization: determining the optimal send-buffer size of an active TCP connection.

2. Global optimization: determining a strategy for dividing a certain amount of buffer space

among a certain number of active TCP connections.

If the send-buffer of a TCP connection is not big enough, the available bandwidth of the connec-

tion cannot be fully utilized. On the other hand, a too big send-buffer would waste a resource
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that might have been more efficiently used by another connection. We define the optimal size

of a send-buffer for a TCP connection as the smallest size that enables the connection to use

the maximum available bandwidth. This paper proposes a method for local optimization that

dynamically allocates send-buffers to TCP connections.

An important property of the proposed method is that it dynamically adjusts the TCP send-

buffer size to the connection and server characteristics. The Internet introduces a great scale

of end-users, connected to the network by means of many types of equipment: slow analogue

modems, ADSL and satellite links, and high-speed routers. While a connection over an analogue

modem might have a bandwidth-delay products of 1-2 segments, a connection over a satellite

link might experience a bandwidth-delay product of more than 100 segments. Our method

recognizes the amount of resources needed by each connection and therefore leads to a better

utilization of the server resources

In a typical HTTP server, such as Apache [1] , all active TCP connections have an equal

(configurable) bound on the send-buffer space they can use. This naive allocation policy is

similar to giving each connection an equal share of the buffer-space. In the context of “global

optimization”, we present more sophisticated allocation policies that are based on the local

optimization scheme. These policies are shown to improve the performance of a loaded web

server, when memory is a limiting factor.

The rest of the paper is organized as follows. Section 2 presents an overview of the TCP

send-buffer concept. Section 3 discusses the local optimization, and proposes a scheme for

dynamic allocation of send-buffers. Section 4 introduces new allocation policies for global opti-

mization, and compares them to the current naive approach. Although TCP and HTTP were

heavily researched over the last few years, the TCP buffer mechanism was left fairly untouched.

However, in parallel to our research, an independent research was conducted by the PSC net-

working group. The two researches were published simultaneously (see [4] and [7]). Section 5

discusses the similarity and the differences of the two solutions. Section 6 concludes the paper,

and in Appendix A we address the issue of Round-Trip Time (RTT) measurement.
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Figure 1: A TCP send-buffer.

2 TCP Send-Buffer Management

This work addresses the TCP buffer management scheme of the BSD UNIX, in particular the

4.4BSD-Lite implementation. Since this scheme was adopted by many commercial operating

systems, such as SUN Solaris, SGI IRIX and even WindRiver’s real-time operating system

VxWorks, the following discussion can be viewed as a model of TCP buffer management in a

general HTTP server.

In 4.4BSD-Lite (e.g [13]), a socket structure consists of two sockbuf sub-structures: one for

the send-buffer (so snd) and another for the receive-buffer (so rcv). As shown in Figure 1, each

sockbuf structure contains a pointer to a linked chain of mbuf structures. An mbuf structure

consists of 128 bytes. Some of these bytes are used for control data, such as a pointer to the

next mbuf in the chain, a pointer to a data buffer, a number of valid data bytes in the data

buffer, and so on. The remaining bytes, up to 108, can be used for storing data. Each mbuf in

the chain that does not contain data, points to a bigger data buffer, called cluster. A cluster,

also known as extern-buffer or mapped page, is a storage unit of 1, 2 or 4 Kbytes, depending

on the operating system version. Figure 1 shows a TCP send-buffer containing 2148 bytes of

data, that are stored in one 2048-byte cluster and one mbuf. Note that in a TCP send-buffer
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the data is stored as a stream of bytes, with no packet borders. When new acknowledgments

(ACKs) are received and all the data contained in an mbuf or a cluster is acknowledged, the

buffer is deleted from the chain and appended to the free buffer list. The maximum number of

clusters that can be allocated is defined at system configuration.

The amount of data in the send-buffer is regulated by the following three sockbuf data

members:

1. sb cc indicates the current number of unacknowledged data bytes in the entire send-buffer.

2. sb hiwat (high water mark) is an upper bound on sb cc; thus, it indicates the maximal

number of data bytes the send-buffer can contain.

3. sb lowat (low water mark) is a lower bound on the amount of free space (sb hiwat-sb cc)

the send-buffer should have before it can accept more data from the application. A

server process that tries to add new data into the send-buffer when the amount of free

space is below sb lowat is suspended. When a new ACK is received, a process that was

suspended due to lack of free space in the send-buffer is resumed. However, such a process

is immediately re-suspended if the released space is not large enough.

In most UNIX HTTP servers the values of sb lowat and sb hiwat are set during the server

configuration. Therefore, every TCP connection has the same bound on the send-buffer. When

the size of an HTTP response is much bigger than sb hiwat, such an approach is equivalent to

allocating an equal portion of the buffer pool to every TCP connection. As shown later, this

naive policy has a bad impact on server performance.

Procedure 2.1 presents a pseudo-code of a WWW server sending an HTTP response to a

client:

Procedure 2.1

while (nbytes=fread(requested-file, array, size-of-read,. . . )) {

. . .

send(socket,. . . , array, nbytes);

. . .

}
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During every iteration, a block of a few Kbytes is read from the requested file. Then, system

call send is called in order to transfer these bytes into the TCP send-buffer. The socket layer

function sosend is invoked as a result of the call to send. A pseudo code describing the operation

of sosend is presented in procedure 2.2.

Procedure 2.2

repeat {

while (sb hiwat-sb cc<sb lowat) wait;

fill one network buffer (mbuf or cluster);

call TCP output procedure;

} until all data in the block has been transferred to the send-buffer;

First, as explained before, the process waits until the send-buffer has sufficient empty space.

Then, a block of data is copied into a newly allocated buffer which is afterwards appended to the

send-buffer. When TCP flow control scheme, to be discussed in the next section, allows to send

a new segment, a new segment with an appropriate TCP header is formed by the TCP output

procedure. Then, the IP output routine is called and the segment is enqueued for transmission

on the network interface. Function sosend returns after all the received data is transferred to

the send-buffer. A more detailed description of the TCP buffering mechanism is given in [4].

Throughout the paper we consider a server whose internal structure is similar to what have

been described so far. In particular, it is assumed that the size of the TCP send-buffer is

regulated by high and low water marks, and that the send-buffer is constructed from basic

storage units.

3 Local Optimization of Buffer Allocation

This section proposes a method for approximating the optimal send-buffer size for every TCP

connection. As already indicated, the optimal size is the minimum that enables the connection

to work at maximum speed. In the context of local optimization we consider the performance

of a single connection. Section 4 expands the discussion by considering the case where many

connections exist, and global optimization is sought.
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3.1 TCP Congestion Control

We start with a short overview of TCP congestion control mechanism. This mechanism dictates

the actual rate data is transmitted by a TCP connection into the network. Hence, it directly

affects the optimal size of the send-buffer.

A TCP connection is bi-directional in the sense that both sides can send data. However,

since this paper concentrates on the data transmitted by an HTTP server to an HTTP client,

the former will be referred to as the ‘sender’, and the latter as the ‘receiver’.

TCP is a sliding window protocol. It therefore limits the amount of outstanding data to a

size called the sender window. The sender window is set to the minimum of two parameters:

1. The receiver advertised window, which reflects the amount of free space the receiver has

in its receive-buffer.

2. The sender congestion window (cwnd), as determined by the TCP congestion control

scheme.

TCP congestion control has three modes: slow-start, congestion-avoidance and fast-retransmit.

The main difference between the modes is the increasing rate of cwnd. The sender enters slow-

start when it starts to send data or after a timeout. It initializes cwnd to a size of one segment,

and increases it by size of one segment whenever a new ACK is received. This results in doubling

cwnd every round-trip time (RTT). The shift from slow-start to congestion-avoidance is made

when cwnd reaches the congestion window threshold (ssthresh). This threshold is supposed to

indicate that the sender window has nearly reached the network capacity, and that from this

stage cwnd should be increased more carefully. Hence, during congestion-avoidance cwnd is

only linearly increased: by 1
cwnd for every received ACK, which is equivalent to one segment for

every RTT. At connection setup, the value of ssthresh is initialized to the maximum window

size, 65536 bytes. It is updated to one half of the sender window in two cases: following a

timeout, or when the sender enters fast-retransmit.

The third mode of TCP congestion-control is fast-retransmit. The sender enters fast-

retransmit mode upon receiving 3 duplicate ACKs. After the third duplicate ACK is received,

the sender retransmits the missing segment, sets ssthresh to one half of the sender window and
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Figure 2: Stages in the lifetime of a data segment.

reduces cwnd to b cwnd2 c+3. The sender exits fast-retransmit when an ACK for the retransmitted

segment is received. Upon exiting fast-retransmit, the sender enters congestion-avoidance and

cwnd is set to ssthresh, i.e. to one half of the window size before fast-retransmit was entered.

We distinguish between 3 different stages in the lifetime of a data segment, from the moment

it is read from the server disk until it is acknowledged by the client and discarded from the send-

buffer (see Figure 2).

Definition 1:

1. A pending segment is a data segment that was fetched from the disk into the main memory

but has not yet been copied into the send-buffer.

2. A fresh segment is a data segment that was copied into the server send-buffer but not yet

sent.

3. An outstanding segment is a data segment that was sent but not yet acknowledged.

3.2 The Optimal Send-Buffer Size

The optimal size of a send-buffer for a TCP connection is the smallest size that still enables

the connection to use the maximum available bandwidth, i.e. to send a new segment whenever

TCP flow control allows. The difficulty in finding the optimal size is that it changes during the

connection lifetime, even if the network conditions do not change. The optimal size is directly

affected by the following three factors:

1. The sender cwnd.
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2. The connection RTT.

3. The server ReadTime. We define ReadTime as the time needed to access, read and transfer

a new block of data from a file into the send-buffer. In most cases files are stored on a

secondary storage media, in which case ReadTime is mainly affected by the media access

time and the server load.

Since new data can be fetched from the disk only once per ReadTime, the send-buffer should

contain enough fresh segments to enable all possible transmissions of new segments to take place

during a ReadTime period. The maximal number of fresh data segments that can be sent during

a ReadTime period depends on the number of data segments that are outstanding when the file

access is invoked, and on the congestion control mode. For example, suppose that ReadTime

< RTT and assume that at time t a new file access is invoked. If at that time there are n

outstanding data segments and the connection is in slow-start, then until time t+ReadTime no

more than n ACKs can be received. Since during slow-start a receipt of a new ACK triggers

the sending of two new data segments, no more than 2 · n fresh data segments can be sent

before the file access is completed. Therefore, in order to avoid unnecessary delays, at time t

the send-buffer should contain not only the n outstanding segments, but also additional 2 · n

fresh segments. From the same considerations, the maximum number of fresh segments needed

during time interval [t+ RTT, t+ 2 ·RTT) is 4 · n segments. Hence, the file access triggered at

time t should fetch at least 4 · n segments.

The proposed mechanism for local optimization is based on the above observation. Its

main idea is to manage a dynamic send-buffer size, that adapts to the actual condition of the

connection and the network.

3.3 A Scheme For Local Optimization

In what follows, a scheme for local optimization of buffer allocation is presented. Denote by

cwnd[t] and ssthresh[t] the values in segment units of the sender’s variables cwnd and ssthresh1

at time t. Throughout the paper, we usually refer to the values of variables after some event
1Although cwnd, ssthresh, and the send-buffer water marks are measured in bytes, it is more convenient to

consider them in segment units.
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takes place. For instance, if an ACK is received at time t, then cwnd[t] indicates the value of

cwnd after the ACK is processed. In those rare cases where we refer to the value of a variable

before the event, we shall use [t−] rather than [t].

For the formal discussion we define next(cwnd)[t] as follows:

next(cwnd)[t] =


min(2 · cwnd[t], ssthresh[t]) if cwnd[t] <ssthresh[t] (slow-start)

bcwnd[t]c+ 1 otherwise (congestion-avoidance or fast-retransmit)

We also denote by next2(cwnd)[t] the value of next(next(cwnd)[t])[t]. For simplicity, we shall use

next[t] as a shortened form for next(cwnd)[t], and next2[t] as a shortened form for next2(cwnd)[t].

Intuitively, if the number of outstanding segments at time t is cwnd[t], then next[t] is an upper

bound on the number of fresh segments that can be transmitted during time interval [t, t+RTT),

and next2[t] is an upper bound on the number of fresh segments that can be transmitted during

time interval [t+ RTT, t+ 2 · RTT).

Following is the proposed local optimization scheme for the case where readT ime < RTT .

A generalization for this scheme is described later.

Procedure 3.1 Local Optimization Scheme (LOS)

1. If at time t cwnd changes2, set sb hiwat= bcwnd[t]c+ next[t].

2. The first file access should fetch from the disk at least 3 segments.

3. Any other file access, invoked at time say t, should fetch from the disk at least next2[t]

segments.

Consider as an example a connection in congestion-avoidance, as depicted in Figure 3.

Assume that at time t0 cwnd= 2.5, and there are 3 fresh segments and a pending one. At time

t1 an ACK is received for segment 0. Hence, cwnd is incremented by 1
cwnd = 0.4 to 2.9, the

acknowledged segment is deleted from the send-buffer and the pending segment is appended.

Since there are no more pending segments, then according to the server model described in

Section 2, a new file access is invoked. Following rule 3 of Procedure 3.1, the file access is of size

next2[t1] = next(next(2.9)) = 4 segments. At t2, an ACK for segment 1 is received and cwnd
2Actually, the frequency of sb hiwat updates can be much lower, as explained later.
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Figure 3: An example for the Local Optimization Scheme.

increases by 1
2.9 to 3.244. Hence, 2 fresh segments can be transmitted (segments 3 and 4 in the

figure), increasing the number of outstanding segments to 3 and leaving only one fresh segment

in the buffer. The file access is completed at t3 = t1+ReadTime. Following rule 1 of Procedure

3.1, sb hiwat[t3] = bcwnd[t3]c+next[t3] = b3.245c+next(3.245) = 3 + 4 = 7. Since just before

t3 there are 3 outstanding segments and only 1 fresh segment, 7 − 3 − 1 = 3 segments from

the read chunk can be appended to the send-buffer, and 1 segment remains pending. At time

t1+RTT an ACK for segment 2 is received, and therefore cwnd becomes 3.245 + 1
3.245 = 3.553.

The acknowledged segment is deleted from the send-buffer and therefore the pending segment

is inserted. Hence, a new file access, of next2(3.553) = 5 segments, is invoked. Note that the

number of fresh segments sent during time period [t1 +RTT, t1 +2 ·RTT) is equal to the number

of segments fetched in the file access invoked one RTT earlier, at t1.

In the following we present simulation results for the new scheme. The simulations were

performed with version 1 of the network simulator ns [10]. We tested connections over 1-Mbps

link with an RTT of 150 msec and a configurable uniform loss. The increase in the loss rate
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reflects a decrease in the network available bandwidth. Each connection transferred 500 Kbytes

(1000 segments of 512 bytes) of data. We compared the performance of a connection that uses

the proposed local optimization scheme (LOS) to the performance of a connection that uses

fixed sized sb hiwat of 8, 16 or 32 Kbytes. During the simulations, a connection that uses

LOS receives as much buffers as demanded by the scheme. We have averaged the results of 50

simulation runs, each with a different loss-generation seed. In order to achieve the burstiness

effect of segment losses, we have increased the loss probability of a segment that follows a lost

segment.
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Figure 4: Average time for 500 Kbyte transfer.
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Figure 4 depicts the average time needed to complete a 500 Kbyte transfer, as a function

of the connection loss rate. LOS achieves the best utilization of the available bandwidth. The

same utilization is achieved when a 64-segment (32 Kbytes) buffer is used. For a 16-segment

and 32-segment buffers, the throughput is smaller. However, the real advantage of LOS is

evident from Figure 5 that shows the average amount of buffers used during the transfer. While

LOS detects changes in the available bandwidth and allocates less buffer space accordingly, the

scheme that uses a fixed sb hiwat always allocates the maximum buffer space.
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LOS intends to avoid cases where TCP output procedure wants to send a segment, but
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such a segment does not exist since it was not yet fetched from the disk. In what follows, such

an event is referred to as buffer miss. Figure 6 depicts the average number of buffer misses

encountered during the simulations. The schemes that allocate a 16-segment buffer and a 32-

segment buffer had many buffer misses under a low loss rate. The scheme that allocates a

64-segment buffer experienced, on the average, less than one buffer miss, whereas with LOS no

buffer miss is encountered.
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Figure 6: Average number of buffer misses.

Disk access time is composed of three basic delay components. The first component is the

time spent while waiting on the disk controller’s queue. The second component is the sum of the
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seek time and the rotation latency. An average value for this component is about 15 milliseconds.

The last component is the transfer time, namely the time needed to physically read the data

from the disk. Therefore, in environments such as high bandwidth LANs or broadband access

networks (with servers located in a local POP), disk access time can be considerably greater

than RTT.

In the following we present a generalization of LOS that handles the case where ReadT ime ≥

RTT . Define Tfact as dReadT imeRTT e. Previously we saw that when Tfact = 1, it is sufficient to hold

in the send-buffer additional next[t] fresh segments in order to guarantee maximum throughput,

i.e. no buffer miss. When Tfact = k, the send-buffer should contain next[t] + next2[t] + . . .+

nextk[t] additional segments in order to allow the sender to work at maximum possible speed

during a period of Tfact·RTT. As an example, consider Figure 7 that describes a connection in

congestion-avoidance. Assume that at time t′ Tfact = 2 holds, and that cwnd= N . Therefore,

at this time sb hiwat= cwnd +next[t′] +next2[t′] = N + (N + 1) + (N + 2). Suppose that at t′

there is only one pending segment. Therefore, at time t0, when a new ACK that acknowledges

outstanding data is received, the pending segment is inserted into the buffer and a new file access

is invoked. Until time t0+Tfact·RTT, the time when the file access has completed, no more than

(N + 1) + (N + 2) new segments can be transmitted. Hence, buffer miss is not possible. Note

that the file access initiated at t0 should read at least next3[t0] +next4[t0] = (N + 3) + (N + 4)

new segments.

The proposed solution requires an estimation of both ReadT ime and RTT. RTT estimation

is discussed in Appendix A. In contrast to RTT, disk access time is highly dependent on the

specific disk system. Most advanced servers today employ RAID-based systems [5]. A summary

of the research performed in the area of RAID performance evaluation, in terms of utilization,

response time etc., is given in [11].

3.4 Implementation Issues

The local optimization scheme requires minor adjustments to the server model presented in

Section 2. This section summarizes these adjustments. Procedure 3.2 is a modified version of

procedure 2.1.
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Procedure 3.2

size-of-read = initialValue;

array = allocateArray(size-of-read);

while (nbytes=fread(requested-file, array, size-of-read, . . . )) {

. . .

send(socket,. . . , array, nbytes);

free(array);

size-of-read = calcNextRead(socket);

array = allocateArray(size-of-read);

. . .

}

The main difference is the call to a new function, calcNextRead, that computes next2[t] for the

connection. The modified server routine calls calcNextRead in order to determine the size of

the next file access. A new intermediate buffer with the proper size is allocated for every file
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access.

Procedure 3.3 is a modified version of procedure 2.2, describing the operation of the socket

layer function sosend.

Procedure 3.3

repeat {

updateBufferSize();

while (sb hiwat-sb cc<sb lowat) {

wait;

updateBufferSize(); }

fill network buffers;

call TCP output procedure;

} until all data in the block has been transferred to the send-buffer;

The new procedure updateBufferSize is called in order to compute next[t] and set sb hiwat to

bcwndc+ next[t], according to the optimization scheme. Sb hiwat is recomputed in two cases:

upon entering a new iteration of the loop, and when a process is resumed after waiting for

buffer space. Note that unlike 2.2, the modified procedure can add multiple buffer units to the

send-buffer during a single iteration.

4 Global Optimization

Suppose there is a limit N on the number of buffers the kernel assigns for TCP connections. In

such a case, the kernel might not be able to allocate to each connection the amount of buffer

space specified by LOS. This raises the need for a global optimization scheme, that assigns the N

available buffers to the active connections according to some policy. The naive allocation policy,

employed by HTTP servers today, is to give each active connection an equal share of the buffer

space. Namely, every established connection has the same sb hiwat. This naive approach yields

low aggregated throughput because it does not take into account the variance in the bandwidth-

delay products and RTTs of different connections. For example, a connection over a 6-Mbps

ADSL link is allocated the same buffer size as a connection over a 14.4-Kbps analogue modem.

The connection that uses an ADSL link is most likely to under-utilize its available bandwidth
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due to buffer misses, whereas the connection that uses a low-speed modem is allocated more

buffer space than it actually needs in order to fully utilize its available bandwidth.

Following is the description of two proposed allocation policies. Both policies employ LOS

in order to compute the optimal buffer space every connection needs. A queue for connections

that are waiting for more buffer space is defined. As long as there is no shortage in buffers,

the queue remains empty. If a connection needs a buffer when the buffer pool is empty, the

associated process is suspended and enqueued. The main difference between the two policies is

their queuing discipline:

1. Round Robin (RR): the queue is managed according to first in first out (FIFO) discipline.

When a buffer is released and the queue is not empty, the first connection is dequeued.

The connection appends this buffer to the send-buffer. If it needs more buffers, it is

enqueued once again. Since LOS guarantees that a connection never requires more buffers

than what it actually needs, this policy is equivalent to the implementation of max-min

fairness.

2. Priority Queuing (PQ): the queue is managed as a priority queue. The priority of each

queued connection is set to min(p, ik ), where k is the number of buffers the connection

already holds, i is the connection sb hiwat as computed by LOS, and p is the maximal

priority for connections holding buffers. A connection holding no buffers is granted with

priority p + 1. This is because such a connection is most likely to be able to use the

new buffer for the transmission of a new segment, thus contributing to the aggregated

throughput. This scheme ensures fairness in the sense that all connections get the same

percentage of the buffer space they need.

We used ns to simulate these allocation policies and evaluate their performance. The simu-

lated network consists of one server node connected to 100 different client nodes through disjoint

links. Two types of links are defined: 1 Mbps links and 0.1 Mbps links. The round trip associ-

ated with every link is 150 msec, and readTime is 50 msec. The segment loss rate is 0.01, and

effect of burstiness is achieved by increasing the loss probability of a segment that follows a lost

segment. The connections established over the 1 Mbps links are referred to as fast connections
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whereas those established over 0.1 Mbps are referred to as slow connections. The server task

on every simulation run is to transfer 250 Kbytes (500 segments of 512 bytes) over 50 different

connections, assuming it is capable of handling up to 10 connections simultaneously3. The

following results reflect the average of 50 simulation runs, each with a different pseudo-random

generator seed. When the naive policy is tested with a server buffer pool of N buffers, sb hiwat

of all connections is set to N
10 .
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Figure 8: Average bandwidth of fast connections.
3A relatively small number of connections was used in order to bound simulations run time. The tested server

buffer pool sizes were selected respectively. However, a larger number of connections and larger buffer pools are
to derive similar results.
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Figure 8 depicts the average bandwidth of the fast connections as a function of the server

buffer pool size. It is evident that PQ achieves considerably better performance for every buffer

pool size, and that for a large pool size PQ and RR achieve the same performance. When

the pool size is very small, PQ is superior whereas the performance of RR is worst than the

performance of the naive policy. The reason for this is as follows. Under the naive policy,

buffers released during connection termination are returned to the pool and are not claimed by

any other connection. Hence, a new connection can be immediately allocated up to sb hiwat

of buffers. On the other hand, when RR is used and the pool size is small, released buffers are

always allocated to existing connections, and therefore a new connection is likely to wait longer

before getting buffers and contributing to the aggregated bandwidth. PQ avoids this problem

because a new connection is most likely to have a higher priority than the “old” connections,

since it either holds no buffers at all or just a small fraction of what it needs. With slow

connections, all policies achieved the maximum available bandwidth for all reasonable buffer

pool sizes. This is predictable since these connections require relatively small buffer space in

order to fully utilize the available bandwidth.

Figure 9 shows the average buffer space used by the server during the simulation, i.e. the

sum of buffers used by all active connections (fast and slow), as a function of the buffer pool size.

While RR and PQ never use more buffers than needed, the naive policy frequently allocates

more buffers than needed. For example, when the buffer pool size is 350 segments, the naive

policy allocates the connections 100% more buffers than PQ does but nevertheless, achieves 4%

less bandwidth for the fast connections. Hence, a server employing the naive policy needs a

considerably bigger memory space in order to achieve maximum performance. A server running

PQ or RR can use the extra buffer space to increase the number of accommodated connections,

or for other important tasks, like file caching. Furthermore, such methods are suitable for

embedded systems where high utilization of the available memory is essential.

The fairness of the proposed allocation schemes was tested using the fairness index proposed

in [9]. This index is computed as
[
∑

xi]
2

n·
∑

x2
i

, yielding a value of 1 for a perfectly fair policy

and a smaller value for less fair policies. Using this index for the measured throughputs,

{x1, x2, . . . , xn}, of connections from the same type, we found all the proposed schemes to
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be more than 90% fair.
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Figure 9: Average buffer usage

5 Related Work

in [7], another proposal for efficient buffer allocation by a TCP server, denoted the PSC So-

lution, is presented4. This solution can also be classified as a local optimization method that

dynamically tunes TCP send-buffer size according to the connection condition, and a global
4The two researches were conducted independently of each other, and the two proposals were introduced

almost in parallel in October 1998.
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optimization method that ensures that the global amount of buffers is shared fairly among all

active connections. Although the general approach is similar, there are a few major differences

between the two solutions as described in the following section.

The main difference in the local optimization method is that the PSC solution ignores Read-

Time, which is the time required to fetch a new block of data from the secondary storage. As

mentioned earlier, ignoring ReadTime might lead to throughput degradation in a broadband

LAN or a broadband access network, where the RTT is often smaller than ReadTime. Further-

more, the method presented in this paper maximizes the disk goodput by optimizing the size

and number of disk accesses in the sense that only the data blocks with maximal contribution

to the overall throughput are fetched from the disk.

The global optimization method presented in [7] and in a subsequent work [12], is based

on a fairness routine that periodically scans all connections and, when required, updates their

send-buffer size limit such that max-min fairness is achieved. A hidden assumption is that the

sum of all the buffer sizes of all the connections is smaller than or equal to the size of the global

buffer pool. Under such an assumption, it cannot happen that a connection tries to allocate

a buffer when the pool is empty. However, in a server environment there are other clients,

except TCP connections, that need to access the pool of network buffers, such as UDP-based

applications and the ICMP mechanism. Therefore, in order to guarantee that there are always

free buffers, the PSC solution requires bigger buffer pools. In contrast, the solution proposed

in this paper does not encounter this problem since it queues unfulfilled buffer requests. When

a buffer is released to the pool, it is immediately allocated to the connection at the head of the

queue. Although it requires a more complicated logic than in the PSC solution, this gives our

approach several additional advantages as follows. First, as opposed to the PSC solution, our

global optimization method does not require to periodically scan all the connections in order to

enforce fairness. This periodic scan can exploit considerable amount of processing power when

the connection load is in an order of magnitude bigger than the load tested in [7]. Second, and

more important, our method is generic enough to support several global policies in addition to

max-min fairness. This is an important advantage since we have shown that other fair policies,

such as PQ, may achieve better performance than max-min fairness.
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6 Conclusion

We have described new dynamic methods for efficient TCP buffer allocation in an HTTP server.

In the first part of the paper, we proposed a scheme for local optimization. The basic idea of the

proposed scheme is to dynamically adjust the TCP send-buffer size to the connection and server

characteristics. The main advantage of this scheme is that it enables to accurately estimate the

minimum amount of buffers a connection needs in order to achieve maximum throughput. Such

a scheme is of increasing importance due to the large scale of connection characteristics in the

Internet.

The second part of the paper discussed the case where the amount of buffer space needed

by TCP connections is larger than the size of the server buffer pool. In this context, two

allocation schemes for global optimization were proposed: RR and PQ. When compared to

the allocation policy employed by a typical HTTP server, the schemes were shown to achieve

better utilization of the server memory and much higher aggregated server throughput. The

optimization methods require only minor changes and only to the server code.

A RTT Measurements

TCP measures the round trip time (RTT) of every connection in order to compute the retrans-

mission timeout (RTO). As previously shown, LOS uses the estimated RTT in order to evaluate

Tfact. However, in typical TCP implementations, the measurement of RTTs is inaccurate for

two reasons:

• A typical TCP implementation measures the round-trip time of only one segment at a

time. The difference between the sampling rate and the segment transmission rate, has

been shown to result in unreliable RTT measurements (e.g. [8]).

• For the RTT measurements, a typical TCP implementation uses a coarse-grained clock,

with granularity of 0.5 seconds. This imposes a serious limit on the measurement precision.

Since inaccurate measurement of RTT has a significant negative effect on the connection perfor-

mance, i.e causing either unnecessary or late retransmissions, the following improvements were
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proposed. In [8], where TCP extensions for high speed networks are discussed, it is proposed

to use the time-stamp option in order to increase the measurement precision. The idea is that

every segment will carry a time-stamp in the TCP options field. The receiver copies the time

stamp into the acknowledgement and, therefore enables the sender to compute the round-trip

time accurately for every segment. In [3], it is proposed to keep the transmission time of every

outstanding segment, thus enabling to compute the RTT of almost every segment upon its ac-

knowledgement. Unlike the previous method, this one requires no cooperation from the receiver

side. Both solutions are shown to yield much more accurate RTT measurements.

Even if RTT measurement rate increases, the granularity of the TCP clock still imposes a

limitation, since Tfact can not be computed for connections that experience RTTs considerably

smaller than 0.5 seconds (in such cases the measured RTT of the connection is often 0 clock

ticks). The solution is either to use a clock with a better granularity or to enhance the precision

of the smoothed RTT (srtt) as proposed in [2]. A much simpler, though less accurate, solution

is to use a pre-defined Tfact, e.g. 1 or 2, for connections whose RTT is smaller than 0.5 seconds.

Note that in general, enhancing clock granularity has been shown to improve TCP performance

(e.g. [6]).
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